Modular Power Electronics for Renewable Distributed Energy

Dr. Bill Kramer

Dr. Sudipta Chakraborty

IEEE Colorado Symposium on Electronics for Sustainable Energy
Marriot Hotel, Boulder, Colorado
May 17, 2008
Outline

• Background
• PE for distributed energy resources (DER)
 – PV, fuel Cell
 – Wind, microturbines, IC engines
 – Battery, flywheel
• Modular power electronics
 – Integrated power electronics modules
 – Topologies for distributed resources
 – Control requirements
• Conclusions
Background

• Increasing importance of distributed resources
• Renewable portfolio standards
• DER consists of
 – Renewable sources (PV, wind)
 – Non-renewable sources (Fuel cell, microturbines, IC engines)
 – Storages (Battery, flywheel)
• Requirements for specific power electronics (PE) for consumer applications and/or grid connection
Barriers for PE

- **Addition of PE with distributed resources**
 - Increased cost (up to 40% of capital cost)
 - Decreased reliability (typically 5 years life)

- **Technology challenges**
 - Lack of standardization
 - Lack of modularity and scalability
 - Lack of DER system package

- **California Energy Commission (CEC) PIER program**
Power Electronics for DER

• Depends on specific DER
 – Type of generation (DC or variable AC)
 – Bidirectional (storages)

• Different PE topologies
 ▪ DC – DC (Buck, Boost, Isolated)
 ▪ DC – AC (Inverter)
 ▪ AC – DC (Rectifier)
 ▪ AC – AC (Cycloconverter, Matrix converter)
 ▪ Combinations AC-DC-AC, DC-DC-AC
PV Topologies

Centralized PV

Cascaded DC-DC and DC-AC

AC-Module
Fuel Cell Topologies

Central Inverter

Cascaded DC-DC and DC-AC

Cascaded DC-AC and AC-AC
PE for PV and Fuel Cell

Single Inverter

Isolated DC-DC Converter and Inverter
Wind Topologies

Full-scale PE

Partially Rated PE
Microturbine Topologies

DC-link Power Converters

HFAC-link Power Converter

Direct AC-AC converter
IC Engine Topologies

- IC engines typically connected by fixed speed synchronous generator
- PE offers the advantage of having variable speed operation - optimizes fuel usage for varying loads

Full-scale PE

Partially Rated PE
PE for Wind, Microturbine, IC Engine

Partially Rated Back-to-back Converters

Full-scale Back-to-back Converters
Controller Example
Battery Storage Topologies

Single Inverter

Cascaded DC-DC and DC-AC

Hybrid System with Battery and Wind
PE for Battery Storage

Bidirectional DC-DC Converter and Inverter

Isolated Bidirectional DC-DC Converter
Flywheel Storage Topologies

DC-link Power Converters

HFAC-link Power Converter
PE for Flywheel Storage

Back-to-back Converters

Back-to-back PDM Converters
Modular Power Electronics

• Power Electronics Building Block (PEBB)
 – Integration of power devices, gate drives, and other components to functional blocks

• Adoption of functional building blocks that can be used for multiple applications results in
 – High volume production
 – Reduced engineering effort

• The value of integration can be enhanced with the standardization of interfaces of the power blocks, control and communications
Integrated PE Modules

- Modular design approach revolves around integrated power electronics modules (IPEM)
- IPEM consists of
 - PE switches
 - DC-link capacitors
 - Sensors
 - Gate drivers
 - Heat sink
 - DSP controller
- Semikron SKAI
- American Superconductor PM1000
Modular Topologies for DER

Cascaded DC-DC and DC-AC Converters

Back-to-back Converters

Bidirectional DC-DC and DC-AC Converters
Generalized IPEM-based PE

<table>
<thead>
<tr>
<th>DG Source</th>
<th>I1</th>
<th>DC-Link Generation (IPEM 1)</th>
<th>I2</th>
<th>Utility Connection (IPEM 2)</th>
<th>I3</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV, Fuel Cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind, Microturbine, IC Engine, Flywheel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Non-operational
Controller for Modular PE

- Dual converters provide flexibility of designing comprehensive control objectives
- In general, the source converters are used for DC bus voltage control
- Grid connected converters are used in constant current control or constant power control
- DC bus voltage regulation is also frequently used for grid converters
- Additionally, for the fuel based systems, such as microturbines, fuel cells and IC engines; external controller can be designed for optimization of fuel
Typical Control Functions

<table>
<thead>
<tr>
<th>DE Systems</th>
<th>Control Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IPEM 1</td>
</tr>
<tr>
<td>PV</td>
<td>Maximum peak power tracking</td>
</tr>
<tr>
<td>Wind</td>
<td>Generator speed, current, flux</td>
</tr>
<tr>
<td>Microturbines</td>
<td>DC bus voltage</td>
</tr>
<tr>
<td>Fuel Cell</td>
<td>DC bus voltage</td>
</tr>
<tr>
<td>IC Engine</td>
<td>DC bus voltage</td>
</tr>
<tr>
<td>Battery-Charging</td>
<td>Battery terminal voltage</td>
</tr>
<tr>
<td>Battery-Discharge</td>
<td>DC bus voltage</td>
</tr>
<tr>
<td>Flywheel</td>
<td>Generator torque, speed, DC bus voltage</td>
</tr>
</tbody>
</table>
Standardization Requirements

• Standardization is required for power flow and signal distribution network
• This in turn allows for distributed controller approach
• By using control software that is functionally divided into hierarchical levels and by standardizing interfaces between levels - application software becomes independent of the hardware specifications of power stage
• The standardization of communication interface allows division of PE system into flexible, easy-to-use, multifunctional modules, which can significantly ease the task of system integration
Conceptual Modular PE System

- User Commands
- System Data Bus
- Application Manager
- Applications Data Bus
- Local Controller
- Gate Driver
- EMI Filter
- IPEM (Rectifier)
- DC Bus
- IPEM (Inverter)
- Passive Filters and Transformer
- Utility
- Heat Sink
- Integrated Cooling
- Coolant In
- Coolant Out

NREL National Renewable Energy Laboratory
Conclusions

• PE adds large installation costs for DER system
• PE designs are specific to the DE technology, still they possess some common functionalities
• IPEM based back-to-back converter topologies - a viable PE interface that can operate with different DE systems with small or no modifications
• However, to reach the goal of modularity, challenges in defining the power and communication interfaces, are to be addressed
Acknowledgements

• California Energy Commission (CEC)
• National Renewable Energy Laboratory

The National Renewable Energy Laboratory is a national laboratory of the U.S. Department of Energy (DOE) managed by Midwest Research Institute for the U.S. Department of Energy under Contract Number DE-AC26-99GO10337. This report was prepared as an account of the work sponsored by the California Energy Commission and pursuant to the M&O Contract with the United States Department of Energy (DOE). Neither Midwest Research Institute, nor the DOE, nor the California Energy Commission, nor any of their employees, contractors or subcontractors, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacture, or otherwise does not necessarily constitute or imply is endorsement, recommendation, or favoring by Midwest Research Institute, or the DOE, or the California Energy Commission. The views and opinions of authors expressed herein do not necessarily state or reflect those of Midwest Research Institute, the DOE, or the California energy Commission, or any of their employees, or the United States Government, or any agency thereof, or the State of California. This report has not been approved or disapproved by Midwest Research Institute, the DOE, or the California Energy Commission, nor has Midwest Research Institute, the DOE, or the California Energy Commission passed upon the accuracy or adequacy of the information in this report.
Questions ?

Diagram of a wind turbine system with the following components:

- Wind Turbine
- Generator
- EMI Filter
- Gate Driver
- IPEM (Rectifier)
- IPEM (Inverter)
- DC Bus
- Heat Sink
- Integrated Cooling
- Utility
- Coolant In
- Coolant Out
- Computer
- System Data Bus
- Applications Data Bus
- User Commands
- Systems Manager
- Application Manager

The diagram shows the flow of data and components within the system, including the integration of cooling and data management systems.